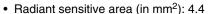


Vishay Semiconductors

Silicon PIN Photodiode

DESCRIPTION


T1120P is a high speed and high sensitive PIN photodiode chip with 4.4 mm² sensitive area detecting visible and near infrared radiation. Anode is the bond pad on top.

FEATURES

· Package type: chip

· High photo sensitivity

· High radiant sensitivity

- · Suitable for visible and near infrared radiation
- Fast response times
- Angle of half sensitivity: $\varphi = \pm 60^{\circ}$
- Compliant to RoHS directive 2002/95/EC and in accordance to WEEE 2002/96/EC

· High speed photo detector

GENERAL INFORMATION

The datasheet is based on Vishay optoelectronics sample testing under certain predetermined and assumed conditions, and is provided for illustration purpose only. Customers are encouraged to perform testing in actual proposed packaged and used conditions. Vishay optoelectronics die products are tested using Vishay optoelectronics based quality assurance procedures and are manufactured using Vishay optoelectronics established processes. Estimates such as those described and set forth in this datasheet for semiconductor die will vary depending on a number of packaging, handling, use, and other factors. Therefore sold die may not perform on an equivalent basis to standard package products.

PRODUCT SUMMARY				
COMPONENT	I _{ra} (μΑ)	φ (deg)	λ _{0.1} (nm)	
T1120P	35	± 60	430 to 1100	

Note

Test conditions see table "Basic Characteristics"

ORDERING INFORMATION					
ORDERING CODE	PACKAGING	REMARKS	PACKAGE FORM		
T1120P-SD-F	Wafer sawn on foil with discoframe	MOQ: 5000 pcs	Chip		

Note

MOQ: minimum order quantity

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
Reverse voltage		V_R	60	V	
Junction temperature		Tj	100	°C	
Operating temperature range		T _{amb}	- 40 to + 100	°C	
Storage temperature range		T _{stg1}	- 40 to + 100	°C	
Storage temperature range on foil		T _{stg2}	- 40 to + 50	°C	

Note

T_{amb} = 25 °C, unless otherwise specified

Vishay Semiconductors

Silicon PIN Photodiode

BASIC CHARACTERISTICS						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Breakdown voltage	I _R = 100 μA, E = 0	V _(BR) 60			V	
Forward voltage	I _F = 50 mA			1.3	V	
Reverse dark current	V _R = 10 V, E = 0	I _{ro} 2		5	nA	
Diada associtance	$V_R = 0 \text{ V, f} = 1 \text{ MHz, E} = 0$	C _D		48		pF
Diode capacitance	V _R = 3 V, f = 1 MHz, E = 0	C _D		17		pF
Open circuit voltage	$E_{e} = 1 \text{ mW/cm}^{2}, \lambda = 950 \text{ nm}$	V _{oc}		350		mV
Temperature coefficient of V _{OC}	$E_{e} = 1 \text{ mW/cm}^{2}, \lambda = 950 \text{ nm}$	TK _{VOC}		- 2.6		mV/K
Short circuit current	$E_e = 1 \text{ mW/cm}^2, \ \lambda = 950 \text{ nm}$	I _k		32		μΑ
Temperature coefficient of I _k	$E_{e} = 1 \text{ mW/cm}^{2}, \lambda = 950 \text{ nm}$	TK _{Ik}		0.1		%/K
Reverse light current	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}, \ V_R = 5 \text{ V}$	I _{ra}	25	35		μΑ
Angle of half sensitivity		φ		± 60		deg
Wavelength of peak sensitivity		λ_{p}		940		nm
Range of spectral bandwidth		λ _{0.1}		430 to 1100		nm
Noise equivalent power	$V_R = 10 \text{ V}, \lambda = 950 \text{ nm}$	NEP		4 x 10 ⁻¹⁴		W/√Hz
Rise time	$V_R = 10 \text{ V}, R_L = 1 \text{ k}\Omega,$ $\lambda = 820 \text{ nm}$	t _r 100			ns	
Fall time	V_R = 10 V, R_L = 1 k Ω , λ = 820 nm	t _f 100			ns	

Notes

 T_{amb} = 25 °C, unless otherwise specified

The measurements are based on samples of die which are mounted on a TO-header without resin coating

BASIC CHARACTERISTICS

 T_{amb} = 25 °C, unless otherwise specified

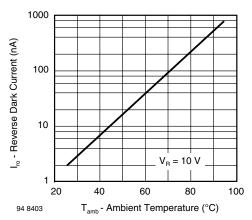


Fig. 1 - Reverse Dark Current vs. Ambient Temperature

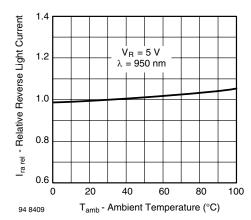


Fig. 2 - Relative Reverse Light Current vs. Ambient Temperature

94 8421

1000 Parage Light Current (LA) 100 P

Fig. 3 - Reverse Light Current vs. Irradiance

E_e - Irradiance (mW/cm²)

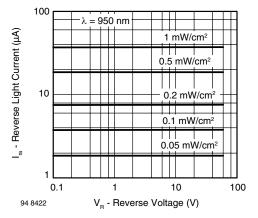


Fig. 4 - Reverse Light Current vs. Reverse Voltage

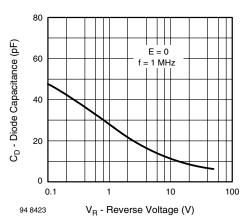


Fig. 5 - Diode Capacitance vs. Reverse Voltage

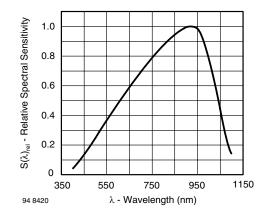


Fig. 6 - Relative Spectral Sensitivity vs. Wavelength

MECHANICAL DIMENSIONS					
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Length of chip edge (x-direction)	L _x		2.37		mm
Length of chip edge (y-direction)	L _y		2.37		mm
Sensitive area	As		4.4		mm ²
Die height	Н		0.28		mm
Bond pad anode	a x b		0.2 x 0.2		mm ²

Silicon PIN Photodiode

ADDITIONAL INFORMATION (1)				
Frontside metallization, anode	Aluminum			
Backside metallization, cathode	NiV-Ag			
Dicing	Sawing			
Die bonding technology	Epoxy bonding			

Note

⁽¹⁾ All chips are checked in accordance with the Vishay Semiconductor, specification of visual inspection FVOV6870.

The visual inspection shall be made in accordance with the "specification of visual inspection as referenced". The visual inspection of chip backside is performed with stereo microscope with incident light and 40x to 80x magnification.

The quality inspection (final visual inspection) is performed by production. An additional visual inspection step as special release procedure by QM is not installed.

T1120P

Vishay Semiconductors

Silicon PIN Photodiode

HANDLING AND STORAGE CONDITIONS

- The hermetically sealed shipment lots shall be opened in temperature and moisture controlled cleanroom environment only. It is mandatory to follow the rules for disposition of material that can be hazardous for humans and environment.
- Product must be handled only at ESD safe workstations. Standard ESD precautions and safe work environments are as defined in MIL-HDBK-263.
- Singulated die are not to be handled with tweezers. A vacuum wand with non metallic ESD protected tip should be used.

PACKING

Chips are fixed on adhesive foil. Upon request the foils can be mounted on plastic frame or disco frame. For shipment, the wafers are arranged to stacks and hermetically sealed in plastic bags to ensure protection against environmental influence (humidity and contamination).

Use for recycling reliable operators only. We can help getting in touch with your nearest sales office. By agreement we will take back packing material, if it is sorted. You will have to bear the costs of transport. We will invoice you for any costs incurred for packing material that is returned unsorted or which we are not obliged to accept.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com